The Mechanism of Arterial Compliance Change and the Value of Acute Luminal Gain

Raymond Dattilo, MD, FACC
Flint Hills Heart, Vascular and Vein Clinic
Manhattan, Kansas
Disclosures

Speaker's Bureau:
Abbott Vascular
Cardiovascular Systems Inc.

Honorarium:

Consultant:

Stockholder:

Grant/Research Support:

Medical/Scientific Boards:
DSMB Micro Medical Solutions

Brand names are included in this presentation for participant clarification purposes only. No product promotion should be inferred.
What is Compliance?
A measure of distensibility
Goals

• Maximize luminal gain
• Achieve laminar flow (maximize wall shear stress)
• Minimize vessel wall injury
Mechanism of Lumen Enlargement With Balloon Angioplasty

- Predominantly a result of intimal and medial dissection with vessel stretching/enlargement
- Small contribution from plaque area reduction (compression). The degree to which this component is responsible for lumen enlargement is dependent upon plaque composition
- Plaque area and calcification are inversely correlated with compliance
Balloon Angioplasty

Controlled Vascular Injury
Disruption of medial layer
Balloon Angioplasty
Restenosis: Predicted by MLD/MLA

- Early vessel recoil
- Flow-limiting dissection
- Neointimal hyperplasia
- Negative remodeling
Objectives

• Increase lesion/arterial compliance
 - Increase luminal gain
 - Increase patency

• Opposing forces
 - Medial Ca$^{++}$ → ↑ arterial stiffness → ↑ vessel recoil
 - Intimal Ca$^{++}$ → non-uniform lesion rigidity → flow-compromising subintimal dissection
Detection of Ca^{++}

<table>
<thead>
<tr>
<th></th>
<th>Coronary Angiography</th>
<th>CT</th>
<th>IVUS</th>
<th>RF-IVUS (IVUS-VH)</th>
<th>OCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++++</td>
</tr>
<tr>
<td></td>
<td>Superficial calcium detection</td>
<td>Color coded tissue composition</td>
<td></td>
<td>Sharp delineation of calcium area is possible</td>
<td></td>
</tr>
</tbody>
</table>
Eccentric Calcium

Insufficient Radial force
Mönckeberg Sclerosis
Good POBA Result in a Compliant Lesion
POBA in Calcified Lesion
74% of lesions which dissect after PTA contain calcium. Dissections occur at points of abrupt compliance transition 87% of the time in calcium containing lesions after PTA.
Focal Force Balloons: controlled dissection

Atherectomy: decrease plaque volume and/or improve compliance

- “Indiscriminate” debulking devices
 - directional atherectomy
 - Jetstream
 - laser
 - Phoenix
- Lesion modification devices
 - orbital/rotational
 - intravascular lithotripsy
PTA of Calcified SFA Lesion
OCT: Dissection at Calcium Shoulder
Orbital atherectomy attempts to achieve a more uniform circumferential compliance which decreases dissection and reduces recoil.
OCT: Minimal Dissection
Intravascular Lithotripsy

Calcium fracture

Ziad A. Ali. Circulation: Cardiovascular Interventions. Safety and Effectiveness of Coronary Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Stenoses, Volume: 12, Issue: 10, DOI: (10.1161/CIRCINTERVENTIONS.119.008434)
Conclusions

• Goal is to increase lesion and vessel compliance and render it circumferentially uniform

• Maximize MLA while minimizing vessel trauma to improve vessel patency
Thank You